
XSTRESSOR: Automatic Generation of Large-Scale
Worst-Case Test Inputs by Inferring Path Conditions

Charitha Saumya, Jinkyu Koo, Milind Kulkarni, Saurabh Bagchi
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN

{cgusthin, kooj, milind, sbagchi}@purdue.edu

Abstract—An important part of software testing is generation
of worst-case test inputs, which exercise a program under extreme
loads. For such a task, symbolic execution is a useful tool with
its capability to reason about all possible execution paths of
a program, including the one with the worst case behavior.
However, symbolic execution suffers from the path explosion
problem and frequent calls to a constraint solver, which make it
impractical to be used at a large scale. To address the issue, this
paper presents XSTRESSOR that is able to generate test inputs
that can run specific loops in a program with the worst-case
complexity in a large scale. XSTRESSOR synthetically generates
the path condition for the large-scale, worst-case execution from
a predictive model that is built from a set of small scale tests.
XSTRESSOR avoids the scaling problem of prior techniques by
limiting full-blown symbolic execution and run-time calls to con-
straint solver to small scale tests only. We evaluate XSTRESSOR
against WISE and SPF-WCA, the most closely related tools to
generate worst-case test inputs. Results show that XSTRESSOR
can generate the test inputs faster than WISE and SPF-WCA,
and also scale to much larger input sizes.

Index Terms—Symbolic execution, Worst-case complexity, Au-
tomatic program testing, Stress testing, Program Synthesis

I. INTRODUCTION

Test input generation plays an important role in software
development and maintenance. With the rapid increase in
complexity and scale of modern software, test input generation
has become far more challenging. Most of existing software
test suites have focused on code coverage, attempting to
exercise as much of a code base as possible [28], [9], [4],
[17], [10], [8], [34]. Another challenge in testing, though,
is the generation of stress tests. Rather than focusing on
code coverage, stress tests focus on stressing key portions of
the code (e.g., causing a critical loop to execute numerous
times), exposing potential performance bottlenecks and bugs
that otherwise might only manifest when software is deployed
at large scales. Stress testing is also useful for identifying pos-
sible security threats such as denial-of-service via algorithmic
complexity attacks [11]. There has been comparatively littlex
work in generating stress tests [39], [3], [2]. The particular
challenge that we address in this paper is generating large-
scale, worst-case inputs. Here, the scale is defined specifically
as the number of elements in a program input, such as the
dimension of an input matrix. The worst-case inputs in our
context are the ones that execute a specific target basic block
a maximal number of times. Generating such specific inputs
is indeed challenging because it requires deep understanding
of program behaviors.

Symbolic execution is a popular test generation technique
that can be used to target particular behaviors in a pro-
gram [21]. Symbolic execution can reason about all possible
execution paths of a program and generate a concrete input that
will exercise a certain path using a constraint solver [13], [6].
However, symbolic execution suffers from the path explosion
problem, which means that the number of paths to explore
increases exponentially when the input size grows. For exam-
ple, when Dijkstra’s shortest path algorithm is symbolically
executed using KLEE [8], input sizes 3, 4, and 5 (meaning
the number of nodes in a graph) result in 4, 56, and 2592
feasible paths, respectively, which require 22, 131, and 5016
number of constraint solver calls, correspondingly. With such
rapid increases, finding test inputs at a large scale that lead to
worst-case behavior can be impractical with standard symbolic
execution methods.

There have been a few attempts in recent years to tackle
the path explosion problem and generate large-scale inputs
by effectively pruning the search space in symbolic execu-
tion [7], [26]. These techniques work by guiding the symbolic
execution along a subset of feasible paths according to some
criteria. The basic idea, as outlined in WISE [7], is to provide
generators that choose a specific direction for each branch
as symbolic execution proceeds, guiding the search along
a particular path. More specifically, WISE is interested in
branching policies that pick out worst-case paths, avoiding the
path explosion problem by pruning paths that will not lead to
the worst-case. By way of analogy, think of these generators
as branch predictors that predict which direction the branch
should go to follow the worst-case path. The predictors are
made by fully exploring the space of paths at small scales,
where the path explosion problem is manageable, and using
this information to predict how branches behave along the
worst-case path at large scales.

WISE [7] proposes a few simple generator strategies (such
as “always true” or “false only if true is not feasible”)
for selecting worst-case paths, while later work, such as SPF-
WCA [26], proposes more expressive generators based on
fixed-length histories of branch decisions that occur at small
scales. While these approaches prune the search space (often
to a single path that needs to be explored), they still require
that the program be symbolically executed at the desired
large scale, possibly necessitating solver invocations at every
branch point. This can easily lead to significant run-time and
memory overhead. For example, if binary tree search is guided

Fig. 1: Overview of XSTRESSOR showing its main steps;
(i) training phase – which generates induction variable
sequence generator models (ii) prediction phase – which
generates the worst-case input for the large-scale execution.

along worst-case paths using WISE’s branch policy, it still
has to make 55 solver calls when searching a tree with just
10 elements, and the number grows quadratically with scale.
Hence, even though the path explosion problem is solved, the
scaling problem remains: making a large number of solver
calls, each with an increasing number of constraints, is still
impractical.

In this paper, we present XSTRESSOR, a scalable technique
to generate test inputs that will trigger the worst-case perfor-
mance of programs, in a large-scale execution.

1) Unlike WISE and SPF-WCA, XSTRESSOR does not re-
quire symbolically executing a program at the desired large
scale to generate the test input. Instead, XSTRESSOR builds
a model of program behavior and synthesizes a large-
scale path condition without executing the program. Hence,
to generate a large-scale test input, the constraint solver
needs to be invoked only once, removing a key scalability
bottleneck.

2) Like WISE [7] and SPF-WCA [26], XSTRESSOR uses
small-scale behavior to predict large-scale worst-case be-
havior. XSTRESSOR is parameterized on the technique used
to build its program models. Our implementation makes use
of a novel recursive modeling technique to capture scale-
dependent branching behavior (e.g., a branch that, at scale
N takes (N/2−1) true branches before taking a false
branch) that occur within nested loops. Hence, XSTRES-
SOR, instantiated with our recursive modeling technique, is
capable of predicting worst-case inputs for a larger class
of programs than WISE or SPF-WCA.

XSTRESSOR, summarized in Figure 1, works in two key
stages: the model building stage and the prediction stage. First,
in the model building stage, XSTRESSOR utilizes a series
of small-scale runs to observe the scaling behavior of key
branching points in a program, and learns a model of this
scaling behavior. The model characterizes the behavior of the
program in two ways: (i) determining how many times each
branch is executed; and (ii) learning the relationship between
induction variables and the branch decisions of the program.
Second, in the prediction stage, XSTRESSOR uses the model to
directly predict the worst-case path condition at a given large
scale. This path condition is solved, using a constraint solver,
to generate the worst-case, large-scale test input. Crucially,
XSTRESSOR does not need to execute the program at large
scale to generate this path, and hence needs to invoke the
solver only once to generate the large-scale path condition.

We evaluate XSTRESSOR in two ways: first, like WISE and
SPF-WCA, we examine several small programs and show that
XSTRESSOR can generate worst-case inputs faster than the
prior two approaches. Second, we look at two case studies of
real-world programs to show that XSTRESSOR can generate
worst-case inputs for realistic functions.

Contributions

To summarize, the contributions of this paper are:
• A new framework, XSTRESSOR, that uses small-scale mod-

els of worst-case program behavior not to drive branch
decisions at large scales (as WISE and SPF-WCA do) but
instead to directly generate the path condition that must be
solved for large scales. This allows large scale test inputs
to be generated very quickly.

• An instantiation of XSTRESSOR’s modeling component that
uses a novel recursive modeling technique to capture com-
plex nested branch patterns that arise from nested control
structures.

• An evaluation of XSTRESSOR, showing that it can generate
large-scale, worst-case inputs faster than prior work on a
wide variety of test programs.

II. BACKGROUND

This section first explains dynamic symbolic execution,
then discusses WISE [7], and SPF-WCA [26] which are two
symbolic execution based approaches for worst-case input
generation.

A. Dynamic symbolic execution
Dynamic symbolic execution [21] is a technique of exe-

cuting programs using symbolic variables instead of concrete
values as input. With some variables declared as symbolic,
dynamic symbolic execution can explore all feasible paths in
a program, computing a path condition for each explored path.
A path condition is essentially the conjunction of branching
conditions that are true along the path. This path condition can
be solved using a SMT solver [6], [13] to find a concrete input
which exercises that path. Unfortunately, symbolic execution
suffers from the path explosion problem, wherein the number
of paths grows exponentially with the number of branches in
the program [32], [16], [37].

B. WISE and SPF-WCA
WISE [7] tackles the path explosion problem by using

heuristics to prune the search space of possible paths. The ba-
sic strategy of WISE is as follows. First, WISE uses symbolic
execution to explore all paths at small scales (where the search
space of paths is tractable), then learns a set of generators
for each branch in the program. These generators describe
which path to take at a branching point such that worst-case
path is guaranteed to be explored. WISE proposed several
generator strategies, such as always true or always false,
but some more complex strategies (such as alternating between
the two) were not supported. SPF-WCA [26] extended WISE
with more complex generator strategies by considering the
decision history for a particular branch. One class of programs

1 void isort(int∗ arr, int len)
2 int i = 1;
3 while(i < len)
4 int x = arr[i];
5 int j = i−1;
6 while(j >= 0 && arr[j] > arr[i])
7 arr[j+1] = arr[j];
8 j−−;
9 arr[j+1] = x;i++;

Fig. 2: Insertion sort pseudocode

that neither WISE nor SPF-WCA can handle are those with
scale-based branch policies, i.e., branches whose worst-case
behavior changes as the input scale increases (such as Boyer-
Moore [5] string search algorithm, explained in section VI-D).
XSTRESSOR’s modeling technique is capable of capturing
these types of worst-case branch behaviours. Some of the
branch policies proposed by WISE and SPF-WCA require
the help of a SMT-solver to decide which path to take at
a branching point. This type of branching policy limits the
ability of WISE and SPF-WCA to generate large-scale inputs
because calling SMT solvers at each step is time consuming.
This is visible in the binary tree search program as described
in section I. XSTRESSOR avoids this problem through a novel
path synthesis strategy (Sections IV-A and IV-B). It predicts
what the large scale path will be and invokes the solver only
once to generate the necessary input, rather than symbolically
executing the program at large scales (Section IV-E).

III. OVERVIEW OF XSTRESSOR

This section describes XSTRESSOR’s overall approach to
synthesizing worst-case path conditions, using the insertion
sort program in Figure 2 to explain the key concepts. Note
that we use the following definition of “worst-case path”:
Worst-case path: Let π be the set of all possible paths in a
program for input size N . We define a program path π′ ∈ π
to be a worst case path if it causes a time consuming basic
block B inside a target loop L to have the maximum number
of executions, among all paths in π. If B is inside a nested
loop within L, we take the cumulative execution count. The
loop L of interest for our problem of stress testing is generally
the most time consuming loop (or “hot loop”) in the program.

Consider symbolically executing insertion sort by setting
a fixed size input array to be symbolic. The worst case
occurs when the next element in the input array needs to be
swapped to the beginning of already-sorted part of the array.
In other words the condition arr[j] > arr[i] is true for all
executions of the conditional statement at line 6 in Figure 2.
This causes the swap operation (basic block from lines 7-8) to
execute the maximum number of times for a given input size.
XSTRESSOR’s modeling technique to infer the worst-case path
condition depends on the following key observations.
1) Variables i, j in the condition arr[j] > arr[i] are loop

induction variables. In this example, variable j is the inner
loop induction variable and i the outer loop induction
variable.

2) We observe that in the sequence of branch conditions added
by the true branch of arr[j] > arr[i] during the worst-
case execution, variables i and j follow predictable patterns
which can be expressed as sequences. These sequences are
dependent on the nesting levels of the two loops and how
many times the inner loop is executed for each iteration
of outer loop. For input size 4 as an example, the path
condition can be expressed as (arr[0] > arr[1])∧(arr[1] <
arr[2])∧(arr[0] > arr[2])∧(arr[2] > arr[3])∧(arr[1] >
arr[3]) ∧ (arr[0] > arr[3]). Note that here all the condi-
tions are placed in their execution order. For these sequence
of conditions, the index variable j, corresponding to the
inner loop, will take on the values 0, 1, 0, 2, 1, 0, and
variable i will have the values 1, 2, 2, 3, 3, 3. Both these
sequences of numbers are structured and can be produced
by a generator function.

3) For a given large scale N , if we have a sequence generator
model that can generate the correct i and j values described
above we can synthesize the worst-case path constraints for
input scale N , without needing to do symbolic execution
at the large scale.

Note that in this simple example, there is only a single loop
that we want to scale up. However, in real-world programs
there will be multiple loops. Through out-of-band mechanisms
like profiling, it can be determined which are the “hot” loops,
i.e., computationally expensive loops, and XSTRESSOR can be
applied to generate inputs to scale each of these loops, one at
a time.

XSTRESSOR leverages the insights from above in its op-
eration. First, it fully explores the execution space at small
scales. It uses this information to build a set of predictive
models that can describe the worst-case path conditions for
a program. These models are basically a set of sequence
generator functions that captures the scaling patterns of loop
induction variables and how those variables determine specific
values in the path condition clauses inside loops (see Sec-
tions IV-A and IV-B). XSTRESSOR then uses these models to
directly synthesize the path condition for a large-scale input
(Section IV-E) without performing symbolic execution.

IV. DETAILED DESIGN

In this section we describe the algorithms used by XSTRES-
SOR in detail. First we define the following key terms used in
our algorithm description.

Definition 1. A symbolic branch is as an edge E = {Vc, Vs}
in the control flow graph of the input program where Vc is a
conditional statement whose outcome depends on a symbolic
variable, and Vs is a statement in the program.
Definition 2. A symbolic assignment statement is of the form
a := m where m contains a symbolic input variable.
Definition 3. A constraint generator point (CGP) is any
symbolic branch or symbolic assignment statement that lies
within the target loop in our given program.

Any conditional statement that uses a symbolic variable
has two constraint generator points, one each for true and

Fig. 3: Leaf vector for CGP arr[j] > arr[i] in insertion-sort

false branches. Each constraint generator point is capable
of adding a constraint to the path condition. For the condition
arr[j] > arr[i] in insertion sort example (Figure 2) the pos-
sible constraint generator points correspond to the constraints
arr[j] > arr[i] and ¬(arr[j] > arr[i]).
Definition 4. Consider the abstract syntax tree (AST) repre-
sentation of a constraint generated by a constraint generator
point. A leaf vector is simply the non-constant leaf values of
this AST collected in order (from left to right).

Consider the AST shown in Figure 3. We can generate
different concrete conditions by changing the values of i and
j in arr[j] > arr[i], i.e., the leaf vector will be [0,1] for
arr[0] > arr[1], and it will be [1,0] for arr[1] > arr[0].
For our modeling technique to work, each CGP must generate
fixed-length leaf vectors (for the insertion sort example, this
length is 2). In Section IV-D we describe a simple transfor-
mation that makes all CGPs have fixed-length leaf vectors.
XSTRESSOR’s algorithm consists of the following steps.
1) Exhaustive symbolic execution at small scales is used to

generate worst-case path conditions.
2) Using information from step 1, a set of generator functions

are synthesized. Given some CGP and some input scale,
these functions can be used to predict the sequence of
numbers produced by each variable in this CGP’s leaf vec-
tor. This allows us to predict the sequence of leaf vectors
produced by this CGP. These models are called induction
variable sequence generators (ISG). For example, for the
CGP arr[j] > arr[i] these generator functions can predict
the sequences generated by variables j, i for any input
scale.

3) For a user-given large scale, for each CGP, we compute
the sequence of leaf vectors produced by this CGP using
the ISG models. Finally the worst-case path condition
is synthesized using the predicted leaf vectors. The path
condition can then be solved using a SMT solver to find a
concrete worst-case input for the given large-scale.

Section IV-A describes ISGs in more detail, and Sec-
tions IV-B and IV-C explain one specific instantiation of ISG
modeling that XSTRESSOR supports.

A. Induction variable sequence generators
While on its surface, XSTRESSOR seems to be similar to

WISE and SPF-WCA—it uses exhaustive execution at small
scale to build models of behavior at large scale—it has a
fundamental difference. WISE and SPF-WCA are interested

in guiding symbolic execution at large scale—their models
need only generate branch direction decisions, while the paths
are explored directly by symbolic execution. In contrast,
XSTRESSOR is interested in completely avoiding symbolic
execution at large scale. Hence, XSTRESSOR’s models must
predict not only the direction of branches at large scales but the
specific constraints in the path so that the path can be solved to
generate a large input. We call these models induction variable
sequence generators, or ISGs.

In order to generate the constraint clauses added by some
CGP for some input scale, we need to model the sequences
generated by each variable in this CGP’s leaf vector. Recall
that a leaf vector is the set of variables in the leaf nodes of
the AST for a given condition. We observe that for programs
with loops, the variables in the leaf vectors of these CGPs are
functions of loop induction variables. If the variation of the
loop induction variables at different scales can be modeled,
then the variation of leaf vectors of generator points can also
be modeled. Recall from Section III that in order to generate
the worst-case path condition for insertion sort, we need to
model the variation of variables j and i which are in the leaf
vector for the condition arr[j] > arr[i]. We model this using
the induction variable sequence generators (ISG).

Consider a loop with k nesting levels, and a CGP p within
this loop. Assume that p’s leaf vector contain some variable
ip. Now take all the constraint clauses generated by p during
some worst-case execution. If we record the value of ip from
all these clauses in the order they are executed, it will generate
a sequence of numbers.

For example, consider the worst-case execution for insertion
sort (Figure 2). The CGP arr[j] > arr[i] at line 6 has
the leaf vector [j, i] according to our definition. Now if we
sample the value of j for input scale 5, it will generate
the sequence 0, 1, 0, 2, 1, 0, 3, 2, 1, 0. We call this sequence an
induction variable sequence. A generator function Gip that
can generate this sequence for any input scale is defined as
the ISG for variable ip in the leaf vector of CGP p. Intuitively,
the induction variable sequences show a recursive structure
for programs with loops, meaning that these sequences can
be generated by calling a set of basic sequence generator
functions recursively. XSTRESSOR’s ISG models are based in
this key insight (see Section IV-B).
Sequence Notation : We use parentheses (“(” and “
)”) to represent the loop nesting level inside a sequence.
“(” and “)” denote increasing and decreasing the nest-
ing level by one respectively. According to this notation,
the sequence in above example can be represented as
((0), (1, 0), (2, 1, 0), (3, 2, 1, 0)).

B. Constructing ISGs using a context-free grammar
We observe that complex induction variable sequences can

be generated by recursively calling simpler sequence genera-
tors. XSTRESSOR captures this recursive structure and builds
a scale independent representation of the sequence by using
a context-free grammar [19]. To understand the semantics of
this grammar (shown in Figure 4), consider a non-nested loop

P → I|C (1)
I → incre(X,X, d) (2)
C → const(X,X) (3)
X → P |x (4)

Fig. 4: Context-free grammar used by XSTRESSOR to
model induction variable sequence generators

L and CGP p inside this loop. Assume p has variable ip in
its leaf vector. XSTRESSOR’s ISGs use the observation that
the variable ip will generate one of the following sequences
during the worst-case execution of L,
• Variable ip can be constant for all iterations of loop L during

the worst case. In this case we identify the sequence ip
generates as a constant sequence. A constant sequence can
be denoted as Ck,x where k is the constant value and x is
how many times k is repeated in the sequence.

• Variable ip can start with value istart and increase/decrease
by amount d until it reaches the value iend. In this case ip
generates a increment sequence. A increment sequence can
be denoted as Iistart,iend,d where istart, iend and d are the
initial value, the final value and the stride of the sequence.
Note that for above definition, L must be a non-nested loop.

If L is nested, these basic sequences get nested on each other.
XSTRESSOR uses the context-free grammar shown in Figure 4
to describe this nested structure of sequences. The goal is to
use this grammar to describe an ISG for any given induction
variable sequence. The grammar is based on 2 main functions,
incre and const, defined in Algorithms 1 and 2 respectively.
• incre takes in three parameters as arguments, two equal-

length sequences (denoted by X1 and X2 in the grammar)
and some value d. Assume that X1 and X2 have l elements
each, and the values at jth position in X1 and X2 are x1j and
x2j respectively. Then incre returns the sequence Ix1

0,x
2
0,d
⊕

Ix1
1,x

2
1,d
⊕ · · · ⊕ Ix1

j ,x
2
j ,d
· · · ⊕ Ix1

l−1,x
2
l−1,d

. Here ⊕ denotes
concatenation of two sequences.

• const takes in two equal-length sequences as arguments.
Let’s denote these two sequences as Y1 and Y2. Assume
that Y1 and Y2 have l elements each, and the values at
jth position in Y1 and Y2 are y1j and y2j respectively. Then
const returns the sequence Cy1

0 ,y
2
0
⊕Cy1

1 ,y
2
1
· · ·⊕Cy1

j ,y
2
j
· · ·⊕

Cy1
l−1,y

2
l−1

.
Note that argument X in incre and const function can

be a single number (i.e. grammar rule 4 in figure 4), in
which case it can be treated as a sequence of just a single
number. Grammar rule 1 says that any induction variable
sequence in this model can be described using incre or const
functions with some reduced sequences as their arguments.
This design allows XSTRESSOR to recursively define complex
induction variable sequences. To elaborate this idea consider
the following examples.
Example 1: Consider the CGP arr[j] > arr[i] in insertion sort
(Figure 2). For worst-case execution at input scale 5, variable
i will generate the sequence ((1), (2, 2), (3, 3, 3), (4, 4, 4, 4)).

Algorithm 1: incre(X1, X2, d)

list L← empty
i← 0
for i < length(X1) do

j ← X1[i]
for j ≤ X2[i] do

L.append(j)
j ← j + d

end
i← i+ 1

end
return L

Algorithm 2: const(X1, X2)

list L← empty
i← 0
for i < length(X1) do

j ← 0
for j < X2[i] do

L.append(X1[i])
j ← j + 1

end
i← i+ 1

end
return L

This can be represented as a sequence of calls to const
function; const(1, 1) ⊕ const(2, 2) ⊕ const(3, 3) ⊕ const(4, 4).
This can be expressed as a single function call to const by
expressing the arguments as lists. This gives us the exprssion
const([1, 2, 3, 4], [1, 2, 3, 4]). Now the argument [1, 2, 3, 4] can
be generated using a call to incre as incre(1, 4, 1) because
the sequence starts with 1, ends with 4 and has a stride
of 1. Therefore the generator simplifies to the expression,
const(incre(1, 4, 1), incre(1, 4, 1)). If same procedure is re-
peated for input scale 4, we can get the generator function,
const(incre(1, 3, 1), incre(1, 3, 1)). Therefore for some gen-
eral input scale N , ISG for variable i can be expressed as,

const(incre(1, N − 1, 1), incre(1, N − 1, 1))

Example 2: Now consider the sequence generated by
variable j in CGP arr[j] > arr[i]. This is sequence is
((0), (1, 0), (2, 1, 0), (3, 2, 1, 0)) for worst-case execution at
input scale 5. This can be represented as a sequence of
call to incre function; incre(0, 0,−1) ⊕ incre(1, 0,−1) ⊕
incre(2, 0,−1) ⊕ incre(3, 0,−1). Here subsequence [3, 2, 1, 0]
is simply incre(3, 0,−1) because it has istart = 3,
iend = 0 and d = −1. The sequence of calls then
can be expressed as incre([0, 1, 2, 3], [0, 0, 0, 0],−1)
As in Example 1 this can be further simplifies to
the expresion incre(incre(0, 3, 1), const(0, 4),−1).
For scale 4, the generator function we get would be
incre(incre(0, 2, 1), const(0, 3),−1). And for scale N the
generator for variable j can be expressed as,

incre(incre(0, N − 2, 1), const(0, N − 1),−1)

Numerical values in these general models are called pa-
rameters of the ISG. In Example 2 these parameters are
0, N − 1, 1, 0, N − 1,−1.

C. Learning an ISG

To build a general ISG, first the structure of the ISG needs
to be identified. This is done as illustrated in Examples 1, 2
above. We infer the generator used for a specific sequence by
performing a bottom-up parse of the sequence (with brackets
denoting loop boundaries). For a sequence of numbers, we
summarize based on whether the numbers are constant or in-
crementing. For a sequence of functions, we summarize based
on a single call to that function with sequences representing
the various parameters in the sequence of functions. These se-
quences are then summarized using const and incre functions
as necessary. This procedure is called generator inference.
Generator inference only gives us a generator that works for
input scale n. Next, a general ISG must be computed using
model fitting. This can be done by inferring the generators
for a set of input scales (say 1, 2, . . . ,M) and fitting some
function model for that ISG’s parameters. XSTRESSOR’s ISG
synthesis algorithm works as follows.

Consider a program P and a CGP p inside some target
loop of P . Assume that ip is one of p’s leaf vector variables.
Assume S is the set of induction variable sequences gener-
ated by ip during the worst-case execution for input scales
1, 2, . . . ,M . XSTRESSOR uses the parsing steps in described
above to compute Gip(1), Gip(2), . . . , Gip(M). Here Gip(k)
is the ISG computed for input scale k. Then XSTRESSOR uses
this set of ISGs to compute a general ISG Gip(N). This is
done using model fitting for ISG parameters as explained in
Example 2.

We found that for a large class of programs ISG parameters
can be described using a polynomial functions of the input
scale.1 In Example 2, the second ISG parameter has the values
1, 2, 3 for input scales 3, 4, 5; therefore the polynomial model
is N−2 for this parameter. It should be noted that there can be
multiple polynomials with different orders that perfectly fit a
given set of data points. To reduce model complexity, we select
the lowest-order polynomial that perfectly fits all the data
points in scales 1, 2, . . . ,M . Therefore we need a threshold
of k data points in small scales such that model computed
using scales 1, . . . , k is the same as model computed using
scales 1, . . . , k+1. Procedure described above can be used to
build an ISG for a single leaf vector variable (i.e. ip). This can
be repeated for all other variables in the leaf vector to build a
complete generator model for the given CGP. XSTRESSOR’s
ISG synthesis procedure is summarized in algorithm 3.

D. Handling symbolic assignment statements
In Section IV-A we mentioned that any variable in a leaf

vector can be described recursively using two basic sequences;
increment and constant sequences. However this is not the case
when some leaf vector variable is updated inside the loop. This

1ISG models can be built using other kinds of functions (e.g., exponential
function), given that the function perfectly fits all the data points

1 for(int i=0; i<N; i++){
2 if(A[i]>5){
3 A[i+1] = A[i]+1;
4 }
5 else break;
6 }

Fig. 5: Example source code with symbolic assignment
statements

causes the corresponding CGP to generate constraint clauses
with different abstract syntax tree (AST) structures and we can
no longer define a fixed length leaf vector for this CGP because
each constraint has a different AST structure. To elaborate
more on this issue consider the example code in Figure 5.
Assume that A is a symbolic array with length 3. Worst-case
occurs when condition at line 2 is true for all iterations of
the for loop. The condition generated by the CGP A[i] > 5 is
A[0] > 5 during the first iteration. However there is a read-
after-write dependence between the conditional check at line
2 and the assignment statement at line 3. Therefore in the
second iteration the condition will be A[0] + 1 > 5. The third
iteration will produce the constraint (A[0]+1)+1 > 5, which
simplifies to A[0] + 2 > 5. Notice that this CGP no longer
produce a fixed length leaf vector because for A[0] > 5 leaf
vector is [0, 5] and for A[0] + 1 > 5, it is [0, 1, 5]. Therefore
XSTRESSOR’s ISG models no longer model this CGP because
leaf vectors do not have a fixed length.

XSTRESSOR solves this problem by converting all the
assignment statements in the program to dynamic single
assignment form [35]. In dynamic single assignment form,
each program variable is assigned only once. This is done
by introducing a version number for each variable. Every
time a static variable is assigned to, we increment its asso-
ciated version number and this assignment is converted to a
unique constraint using this updated version number. When
this variable is accessed again, the most recent version is
accessed. Intuitively, each variable becomes a vector, and each
assignment to that variable is made to a different element of
that vector. The version numbers are, essentially, indices of
this vector. Using dynamic single assignment form causes each
CGP to generate constraint clauses with a fixed AST structure,
hence these clauses will have a fixed length leaf vector.
Example: Now assume that in previous example (Figure 5),
each variable will have an additional array index (i.e. version
number), therefore variable A[i] now becomes A[i][j] where i
is the actual array index and j is the version number for array
element A[i]. During the first iteration of the loop constraint
produced by the CGP A[i] > 5 is A[0][0] > 5, because A[0]
is accessed and its version is not updated yet. Assignment
at line 3 will produce the constraint A[1][1] ≡ A[0][0] + 1,
because A[1] is assigned and its version number is updated to
1. A[0] is accessed and its most recent version is 0. During the
second iteration A[i] > 5 will produce the clause A[1][1] > 5.
Here A[1] is accessed and its most recent version is 1 because
A[1] was assigned a new value during iteration 1. Similarly
the assignment at line 2 will produce the clause A[2][1] ≡

A[1][1] + 1. Note that now each constraint clause generate by
CGP A[i] > 5 has a fixed length leaf vector. For A[0][0] > 5
this is [0, 0, 5] and for A[1][1] > 5 the leaf vector is [1, 1, 5].
Constraints generated by the assignment statements have the
same property.

E. Online operation at large scale
Synthesizing the worst case path condition for any user

given large scale (N) can be done as follows. Consider
a constraint generator point p with a leaf vector variables
[i1p, i

2
p, . . . , i

k
p]. Let Gi1p

, Gi2p
, · · ·Gikp

be the ISG models for
these variables. We can predict the sequence generated by
leaf vector variable imp at scale N using its ISG model. This
will be simply Gimp

(N). Recall that the ISG model for a
variable can predict the induction variable sequence generated
by this variable at any input scale. This prediction routine can
be repeated for all the variables in the leaf vector p. Once
we have all the sequences, we can rewrite the constraints
generated by p at scale N . To get the complete path condition,
this procedure must be repeated for all CGPs in the program.
Finally, the generated path condition, which is a conjunction
of all the clauses, is solved using any standard SMT solver—
XSTRESSOR uses Z3 [14]. Importantly, XSTRESSOR does not
use symbolic execution at large scale N and invokes the SMT
solver only once for that scale.

Algorithm 3: BuildISG(grammar C, sequence S[])
list G← empty
for for each scale i in 1, 2, . . .M do

g ← InferGenerator(C, S[i])
G.append(g)

end
G
′ ←ModelF itting(G)

return G
′

V. IMPLEMENTATION

We used KLEE [8] as our symbolic execution platform
to perform exhaustive symbolic execution execution in small
scale. Then worst-case paths were identified according to the
criteria described in section III. We developed a Python tool2

(2500 LOC) for constructing the ISG models described in
Section IV. Our prototype implementation only attempts to
learn polynomial models for ISG parameters (our tool will
fail if worst-case behavior requires more complex models).
We used Z3 [13] as our constraint solver and Z3’s Python
interface was used for constraint processing work.

A Python implementation of the target program was man-
ually instrumented to collect the conditions generated by
constraint generator points (i.e., conditional and assignment
statements). Then the benchmarks were run using the small-
scale, worst-case inputs (gathered as described above) to
obtain the path conditions as Z3 constraint expressions. For
a user-given large scale, the corresponding large scale path
condition was synthesized in Z3 format using the ISG models

2this tool is available at https://github.com/charitha22/XSTRESSOR

and solved using the Z3 SMT solver to generate a concrete
solution. Currently our implementation assumes programs
that take integers (such as, Dijkstra) or boolean variables
(such as, boolean matrix multiplication) as input. But the
approach can be easily generalized to other data types as
well depending on the solver capabilities. XSTRESSOR is also
capable of modeling array theory based constraints (select,
store axioms) [15]. This is important when symbolic variables
appear as array indices (A[a] > 0 where A is array variable
and a is symbolic integer).

VI. EVALUATION

This section presents our evaluation of XSTRESSOR. First,
we study its performance versus WISE and SPF-WCA when
generating test inputs of various sizes for several benchmarks.
Then, sections VI-C and VI-D present the results of applying
XSTRESSOR to two real world programs.
A. Experimental setup

We evaluate XSTRESSOR by using it to generate worst-case
inputs at varying scales for six different benchmark programs.
We chose these programs because they cover the 3 broad
classes used in evaluating symbolic execution approaches,
including WISE, namely, sorting, searching, and graph algo-
rithms.
1) Insertion sort: Our running example, shown in figure 2.

Increasing scale means sorting a larger array. Worst case
behavior arises when sorting a reverse-sorted array.

2) Sorted list insert: Inserting an element into an already
sorted array. Increasing scale means increasing array size.
In the worst case, a new element is added at the end of the
array.

3) Merging sorted arrays: Merging two sorted arrays (the
“merge” step in merge sort). Increasing scale means merg-
ing larger arrays. Worst-case behavior happens when merg-
ing two arrays such that elements in the final array alternate
between the input arrays. Note that the worst-case behavior
for this benchmark requires a branching policy that WISE
cannot handle because there are multiple worst-case paths.

4) Binary tree search: Inserting a set of elements into a
binary tree and querying it for a value. Increasing scale
means searching larger trees. Worst-case behavior happens
when generating a completely unbalanced tree and the
queried value is located in the leaf of the unbalanced tree.

5) Dijkstra’s algorithm: Computing single-source shortest
path using Dijkstra’s algorithm. Increasing scale means
processing a larger graph. Worst-case behavior happens
with a graph where there exists a node such that the shortest
path visits every node in the graph.

6) Boolean matrix multiplication: Multiplication of two
dimensional boolean matrices. Increasing scale means in-
creasing matrix size. In worst case, each row in matrix 1
needs to be multiplied with every column in matrix 2.

7) Traveling Salesman: Computing the shortest route cov-
ering a set of cities such that each city is visited exactly
once. In worst case, maximum number of paths between
the cities needs to be explored to find the best solution.

We ran our experiments on a server consisting of 2 8-core
Intel Xeon chips running at 2.7 GHz. Each chip has 20 MB
of L3 cache. The machine has 192 GB of RAM.

B. Time to generate large-scale inputs

Table I shows the amount of time it takes for XSTRESSOR,
WISE, and SPF-WCA to generate inputs of the specified
scale for each benchmark program. For WISE and SPF-
WCA, time measurements are based on their publicly available
source code. For all 3 techniques, total measured time for
each scale includes the time spent in small scale symbolic
execution, model building (for XSTRESSOR, models described
in Section IV; for WISE, branch policy generators; and for
SPF-WCA, history-based branch policies), and generating the
large scale input using their respective prediction methods. We
see, across the board, that XSTRESSOR is substantially faster
at generating large scale inputs than prior work: across scales
10, 20 and 30, XSTRESSOR is 1.06x faster and 2.65x faster
than WISE and SPF-WCA, respectively, in the worst case,
and 390x faster and 16.3x faster, respectively, in the best case.
Moreover, for most of the large scales, WISE and SPF-WCA
simply run out of time (OOT) or out of memory (OOM).

XSTRESSOR’s advantage is fundamentally attributable to its
chief novelty: generating the large-scale input does not require
performing symbolic execution at large scales. In contrast,
WISE and SPF-WCA, even though they aggressively prune
the search space, must still perform symbolic execution to
generate large-scale inputs, which, in some cases, requires an
invocation of the solver at some branches. Requiring symbolic
execution at each branch imposes a serious scalability limit on
WISE and SPF-WCA, causing timeouts for many benchmarks.
In contrast, XSTRESSOR is able to generate inputs up to scale
500 for five of our seven benchmarks. It runs out of time for
the largest scales of matrix multiplication due to the limitations
of the constraint solver (the number of path constraints at
a scale of 200 runs into 8M, cube of the input size). For
Traveling Salesmen, XSTRESSOR was unable to compute its
ISG models using the small scale executions because the
induction variable patterns can not be captured using the
context-free grammar described in section IV-B. WISE and
SPF-WCA also fails to find a suitable branch policy for this
benchmark and ends up exploring all feasible paths.

An interesting case is the merging sorted arrays benchmark.
Here, WISE times out even for the smallest scale (N = 20).
This is because the branch policy required for the worst-case
input cannot be captured by WISE’s generator templates. As
a result, WISE defaults to exploring every possible path, and
even at scale 20, the path explosion problem cripples symbolic
execution. Note that SPF-WCA does not have this problem due
to its history-based branch policies. XSTRESSOR’s modeling
technique also captures this branch pattern and does not
need to explore any paths even at scale 10 (modeling can
be completed with much smaller scales), avoiding the path
explosion problem entirely, and generating worst-case inputs
in less than 1 second for even the largest scales.
Breakdown of XSTRESSOR time: Table II shows the amount

of time XSTRESSOR spends in building ISG models, path
synthesis (large scale) and constraint solving stages. Model
building time include the time spent in small scale symbolic
execution and XSTRESSOR’s model building phases; note that
this time is the same independent of the final scale of input
generation. Path prediction time increases with scale because
the number of constraints that have to be predicted is a
function of input scale. When the size of the path condition
increases, the time taken by the solver also increases. We
observed that XSTRESSOR consumes more time in the model
building phase compared to WISE and SPF-WCA because
XSTRESSOR has to build ISG models for symbolic assignment
statements (Section IV-D), which is not a required for WISE
and SPF-WCA. However model building is done only once
and therefore does not affect XSTRESSOR’s performance at
large scale. Also, path prediction time and solver time increase
when the program has deeply nested loops (as in Boolean
matrix multiplication), because the number of constraints that
needs to be predicted grows rapidly with scale.
C. Case Study 1 : GNU Diffutils cmp

GNU Diffutils is a software package consisting of several
programs that can be used to finding differences in files. In
this case study we applied XSTRESSOR to the cmp utility in
GNU diffutils-3.3. cmp is used to show character offsets/line
numbers where two input files differ. Using profiling, we found
that most of the work is done in a single function called
block compare and count. We limited our analysis to this
function, as exhaustive symbolic execution of the full cmp
program is impractical.

Input to the function is two arrays of words. The function
has two main loops. In the first loop it compares the two arrays
word by word and finds out the first differing word. Then in
a second loop the differing two words are compared byte by
byte to detect the exact position of the difference. Therefore
in the worst case the two arrays of words must match in all
byte positions except for the last byte. This input configuration
causes both loops to run the maximum number of iterations.
We performed exhaustive symbolic execution for input array
sizes 2, 3, 4, 5, 6 and used the worst-case path conditions to
build the XSTRESSOR ISG models. We also applied WISE and
SPF-WCA to the same program. The results are summarized
in Table III. We observed that WISE is not able to prune the
entire search tree for this program and hence takes more time
at large scale than XSTRESSOR (41 seconds vs. 27 seconds).
While SPF-WCA terminated quickly for this program, it failed
to produce worst-case inputs, producing suboptimal inputs
for all the history sizes (0, 4, 5, 8) we tested on. Note that
SPF-WCA provides no guidance on what history size for the
previous branches should be selected for worst-case branch
behavior.

D. Case Study 2 : GNU grep

GNU Grep is a tool for searching one or more files for lines
containing a specified pattern. We used GNU grep-2.6.1 for our
experiments. For this program about 98% of the execution
time is spent on a function called bmexec that implements

TABLE I: Elapsed time (in seconds) to generate input of scale N for XSTRESSOR, WISE and SPF-WCA. OOT = out
of time (12 hour time limit); OOM = out of memory (192GB RAM). X = XSTRESSOR, W = WISE, S - SPF-WCA

Benchmark
program

Input scale
10 20 30 40 50

X W S X W S X W S X W S X W S
Insertion sort 1.30 2.14 2.05 1.35 4.12 3.10 1.48 9.83 8.52 1.63 21.03 25.96 1.85 49.57 72.86

Sorted list (insert) 1.63 2.77 2.02 1.64 4.76 3.70 1.64 11.12 11.86 1.64 26.74 31.79 1.65 62.39 86.88
Merging sorted arrays 2.12 826.84 30.82 2.13 OOT 29.88 2.14 OOT 30.1 2.15 OOT 29.9 2.16 OOT 29.96
Binary tree (search) 3.28 4.18 2.41 3.32 6.84 5.31 3.44 16.16 19.38 3.66 33.00 65.05 3.97 56.29 237.67

Dijkstra’s 2.49 2.39 2.45 2.86 2.94 11.23 3.60 4.31 158.28 4.84 5.85 602.75 6.32 9.68 1714.26
Boolean matrix
multiplication 3.76 6.11 20.35 9.01 42.85 1548.19 23.27 139.34 11649.63 52.86 362.01 OOT 107.87 960.03 OOT

Traveling Salesman OOT OOM OOT OOT OOM OOT OOT OOM OOT OOT OOM OOT OOT OOM OOT

Benchmark
program

Input scale
100 200 300 400 500

X W S X W S X W S X W S X W S

Insertion sort 3.92 498.92 OOM 14.30 12512.28 OOM 27.61 OOT OOM 57.03 OOT OOM 96.73 OOT OOM

Sorted list (insert) 1.68 553.89 OOM 1.69 12879.05 OOM 1.74 OOT OOM 1.76 OOT OOM 1.79 OOT OOM

Merging sorted arrays 2.20 OOT 30.42 2.30 OOT 32.25 2.40 OOT 35.41 2.49 OOT 43.18 2.57 OOT 46.62

Binary tree (search) 6.05 1043.69 OOM 16.57 16042.95 OOM 29.92 OOT OOM 58.64 OOT OOM 103.74 OOT OOM

Dijkstra’s 26.36 27.69 OOT 242.74 193.13 OOT 1438.06 654.39 OOT 4603.48 1581.12 OOT 12830 3099.41 OOT

Boolean matrix
multiplication 1279.56 OOM OOT 22022 OOM OOT OOT OOM OOT OOT OOM OOT OOT OOM OOT

Traveling Salesman OOT OOM OOT OOT OOM OOT OOT OOM OOT OOT OOM OOT OOT OOM OOT

TABLE II: Time consumption of XSTRESSOR (in seconds).

Program Time statistic Scales
40 50 100

Insertion sort
Model building 9.28 9.28 9.28
Path prediction 0.52 0.66 2.01

Solver 0.10 0.15 0.84

Sorted list Insert
Model building 4.67 4.67 4.67
Path prediction 0.01 0.02 0.03

Solver 0.01 0.01 0.02

Merging sorted arrays
Model building 2.08 2.08 2.08
Path prediction 0.04 0.06 0.13

Solver 0.03 0.03 0.06

Binary tree search
Model building 10.98 10.98 10.98
Path prediction 0.33 0.49 1.90

Solver 0.10 0.16 0.88

Dijkstra’s
Model building 25.53 25.53 25.53
Path prediction 1.92 3.13 17.52

Solver 0.26 0.41 1.95

Boolean matrix multiplication
Model building 13.68 13.68 13.68
Path prediction 45.57 92.92 1102.13

Solver 5.96 14.41 69.32

the Boyer-Moore fast string search algorithm [5]. For the
subsequent discussion, consider we are searching for a small
pattern string in a large text string.

Boyer-Moore pre-processes the pattern string to build two
tables (delta1 and delta2) that helps it to perform maximum
possible strides along the text looking for a possible match.
Boyer-Moore search starts by aligning the pattern string to
the beginning of the text and comparisons are made starting
from the last character of pattern. If a mismatch is found, the
pattern is shifted along the text, where the amount shifted is
determined by delta1 and delta2 tables. In our experiments
we set the text to be a symbolic string and pattern to be
the fixed string abc. Using small scale symbolic execution
we found that in the worst-case, pattern string abc is shifted
by only one character until the end of the text is reached.
XSTRESSOR was able to capture this behavior successfully in
its models and we were able to generate large scale text strings
that triggers the worst-case behavior. WISE and SPF-WCA did
not finish within the given time limit (12 hours) because they
were unable to find a simple branch policy that will prune the
search space significantly. This is due to the scale-dependent
branch behavior of this program, meaning that a certain branch

statement in this program take n number of false branches
before taking 3 true branches and n is scale-dependent.

VII. LIMITATIONS OF XSTRESSOR

There are several limitations of XSTRESSOR that restrict its
generality that we enumerate here.

First, the design of XSTRESSOR is geared toward triggering
worst-case execution for a target loop. However, the worst-
case execution of a complex program, one that has multiple
loops, may be some combination of execution behaviors of the
different constituent loops, which XSTRESSOR cannot handle.
Second, XSTRESSOR currently only works for iterative pro-
grams; recursive programs that cannot be translated into loops
(e.g., tail-recursive functions) cannot currently be modeled.
Incorporating recursion will likely require an approach to pre-
dicting the structure of recursive calls. Third, XSTRESSOR’s
constraint synthesis step relies on the fact that sequences
generated by the leaf vector variables of some CGP can
be recursively modeled using a set of fundamental sequence
generator functions. Fourth, XSTRESSOR is currently geared
towards generating the path constraint for a single function
or loop nest. We do no special handling for parts of the path
that lead up to the target loop, nor perform any optimizations
to reach the loop efficiently; reaching particular loops in a
large code base is out of XSTRESSOR’s scope and we can use
any of several prior solutions, e.g., [33]. Finally, XSTRESSOR,
like WISE and SPF-WCA, relies on the model of program
behavior constructed at small scales to match the program
behavior at large scales. In other words, all these systems
rely on some notion of continuous behavior. If the large scale
behavior of a program is not similar to its small-scale behavior,
none of these predictive approaches will work. Note that most
of these limitations, other than 2 and 3 (which are specific to
XSTRESSOR’s path condition synthesis step), are shared with
WISE and SPF-WCA.

VIII. RELATED WORK

Analyzing the worst-case behavior or the worst case ex-
ecution time (WCET) has been been a subject of extensive

TABLE III: Evaluation on the case studies. W = WISE, I = SPF-WCA, X = XSTRESSOR

Application Model building Prediction time(seconds)
time (seconds) 50 100 500
W I X W I X W I X W I X

GNU cmp 2.98 1.72 4.234 1.40 1.81 1.86 3.31 1.75 4.07 41.24 2.49 26.77
GNU grep 16.99 OOT 22.70 OOT OOT 96.54 OOT OOT 674.27 OOT OOT 29825.23

research [30], [22], [18], [1], [20]. However, automatically
generating worst-case test inputs for complex programs is
a challenging problem. Symbolic execution has been widely
used to analyze all possible program behaviors under different
inputs. But in the presence of loops and with increasing input
size, using symbolic execution to analyze program behaviors
becomes impractical. Concolic execution [24], [32], which is
a mix between concrete execution and symbolic execution
can avoid prohibitive computational cost associated with full-
blown symbolic execution at the cost of reduced coverage.
Tools such as SAGE [17], Bouncer [10], KLEE [8], and
Pex [34] handled loops by bounding the number of iterations
but unable to reason about program behaviours beyond the
loop bound.

Guiding path exploration is a natural approach to reducing
execution overhead. Both WISE [7] and SPF-WCA [26] uses
small scale exhaustive symbolic execution to learn branch
policies that will guide symbolic execution only along the
worst case paths during the large scale exploration. More
recently, PySE [23] was able to capture irregular branching
patterns with the help of reinforcement learning. Zhang et
al. [40] proposed incremental symbolic execution that iter-
atively deepens exhaustive search depth in a branch tree,
pruning out most of similar paths. Even though this approach
can be used for programs with much complex worst-case
branch patterns, it still needs to invoke a constraint solver
at every search step, and there is no guarantee that it can
find the worst case complexity. In contrast to these schemes,
XSTRESSOR does not require symbolic execution and invokes
the constraint solver only once for large scale test generation.

Loop summarization is a recent approach in multi-path loop
analysis where the effect of a loop is summarized and reflected
as a set of symbolic values [38]. LESE [31] introduces
a new symbolic variable, called a trip count, to represent
the number of times a loop executes, and then looks for
relationship between the trip count and other variables in the
program. That way, LESE can model the effects of loops in a
program and relate them with features of program input. These
summarization techniques are applied at a specific input scale
and it is not immediately clear how they can be used for large
scale test generation. Further, they do not support handling
nested loops, which are common in practice.

Fuzzing techniques have recently been adapted to the prob-
lem of generating worst-case program behavior. PerfFuzz [25]
and SlowFuzz [29] use heuristics to drive input fuzzers to
find long-running execution paths. Fuzzing to generate vul-
nerabilities or worst-case execution behavior can be more
directed when domain knowledge is available, such as through
a DSL [27], as shown by [12]. Unlike XSTRESSOR (or WISE

and SPF-WCA), they cannot provide any guarantees about
finding worst-case behavior, as they are best-effort fuzzers.

Recently, Singularity [36] proposed pattern fuzzing for
automatically generating worst-case inputs. This idea is based
on the fact that worst-case inputs will have some pattern (e.g.,
the input array is reverse sorted). Singularity is capable of
automatically synthesizing an input generator which captures
this pattern. There are upsides and downsides to this approach.
Singularity does not care about how complex a program is if
the worst-case input has a discoverable pattern; in contrast,
approaches like XSTRESSOR, WISE, and SPF-WCA may
not be able to model such a complex program. On the flip
side, XSTRESSOR, WISE, and SPF-WCA are not tied to the
particular form of a program’s input: if they can model the
program behavior, they will generate an input. In contrast, Sin-
gularity operates in input space: it needs to directly generate
inputs, and hence must be instantiated with a library of input
generators and knowledge of the domain. So when presented
with a program with an unknown, or complex, input domain,
white-box approaches may succeed where Singularity fails.

IX. CONCLUSION

Generating large-scale stress test inputs is critical for under-
standing how programs will behave under load. To ensure that
stress tests target critical portions of a program, some form of
white-box testing is required. Unfortunately, the most common
approach to such test generation, dynamic symbolic analysis,
is ill-suited due to its path explosion problem and increased
constraint solving overheads. Here we presented XSTRESSOR
that solves this problem by using a novel modeling technique
which can directly predict the large scale stress test by ana-
lyzing the program behavior at small input scales. In this way,
large scale inputs can be generated to target specific regions
of code without ever performing symbolic execution at large
scales. We evaluate XSTRESSOR on a number of benchmarks
and show that it is not only faster at generating inputs than
the best comparable techniques WISE and SPF-WCA, but can
also scale up to much larger sizes of inputs.

X. ACKNOWLEDGMENTS

The authors would like to thank anonymous review-
ers for their helpful comments and feedback. This work
was partly supported by DOE Early Career Award DE-
SC0010295,National Science Foundation under grant num-
bers CCF-115013 (CAREER), CCF-1439126, CNS-1527262,
CNS-1513197 and an unrestricted gift from Adobe Research.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] H. J. Bang, T. H. Kim, and S. D. Cha. An iterative refinement
framework for tighter worst-case execution time calculation. In 10th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC’07), pages 365–372, May
2007.

[2] C. Barna, M. Litoiu, and H. Ghanbari. Autonomic load-testing frame-
work. In Proceedings of the 8th ACM International Conference on
Autonomic Computing, ICAC ’11, pages 91–100, New York, NY, USA,
2011. ACM.

[3] M. Bayan and J. a. W. Cangussu. Automatic feedback, control-based,
stress and load testing. In Proceedings of the 2008 ACM Symposium
on Applied Computing, SAC ’08, pages 661–666, New York, NY, USA,
2008. ACM.

[4] P. Boonstoppel, C. Cadar, and D. Engler. Rwset: Attacking path
explosion in constraint-based test generation. In Proceedings of
the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’08/ETAPS’08, pages 351–366, Berlin, Heidelberg, 2008.
Springer-Verlag.

[5] R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun.
ACM, 20(10):762–772, Oct. 1977.

[6] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt
solver. In Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’10,
pages 150–153, Berlin, Heidelberg, 2010. Springer-Verlag.

[7] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated test generation for
worst-case complexity. In Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, pages 463–473, Washington,
DC, USA, 2009. IEEE Computer Society.

[8] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA,
USA, 2008. USENIX Association.

[9] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
Exe: Automatically generating inputs of death. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS
’06, pages 322–335, New York, NY, USA, 2006. ACM.

[10] M. Costa. Bouncer: Securing software by blocking bad input. In
Proceedings of the 2Nd Workshop on Recent Advances on Intrusiton-
tolerant Systems, WRAITS ’08, New York, NY, USA, 2008. ACM.

[11] S. A. Crosby and D. S. Wallach. Denial of service via algorithmic
complexity attacks. In Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, SSYM’03, pages 3–3, Berkeley, CA,
USA, 2003. USENIX Association.

[12] M. de Jonge and E. Visser. Automated evaluation of syntax error
recovery. In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 322–325, Sep.
2012.

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[14] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[15] L. de Moura and N. Bjrner. Generalized, efficient array decision
procedures. In 2009 Formal Methods in Computer-Aided Design, pages
45–52, Nov 2009.

[16] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random
testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[17] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox fuzz
testing. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th February -
13th February 2008, 2008.

[18] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic
derivation of loop bounds and infeasible paths for wcet analysis using
abstract execution. In 2006 27th IEEE International Real-Time Systems
Symposium (RTSS’06), pages 57–66, Dec 2006.

[19] J. E. Hopcroft, R. Motwani, Rotwani, and J. D. Ullman. Introduction
to Automata Theory, Languages and Computability. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[20] D. Kebbal and P. Sainrat. Combining Symbolic Execution and Path
Enumeration in Worst-Case Execution Time Analysis. In F. Mueller,
editor, 6th International Workshop on Worst-Case Execution Time Anal-
ysis (WCET’06), volume 4. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2006.

[21] S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proceedings of the 9th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS’03, pages 553–568, Berlin, Heidelberg,
2003. Springer-Verlag.

[22] J. Knoop, L. Kovács, and J. Zwirchmayr. Symbolic Loop Bound
Computation for WCET Analysis, pages 227–242. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[23] J. Koo, C. Saumya, M. Kulkarni, and S. Bagchi. Worst-case test
generation by reinforcement learning. In 12th IEEE International
Conference on Software Testing, Verification, and Validation (ICST),
April 2019.

[24] E. Larson and T. M. Austin. High coverage detection of input-related
security faults. In Proceedings of the 12th USENIX Security Symposium,
Washington, D.C., USA, August 4-8, 2003, 2003.

[25] C. Lemieux, R. Padhye, K. Sen, and D. Song. Perffuzz: Automatically
generating pathological inputs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, pages 254–265, New York, NY, USA, 2018. ACM.

[26] K. Luckow, R. Kersten, and C. Psreanu. Symbolic complexity analysis
using context-preserving histories. In 2017 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST), pages
58–68, March 2017.

[27] K. Mahadik, C. Wright, J. Zhang, M. Kulkarni, S. Bagchi, and
S. Chaterji. Sarvavid: A domain specific language for developing
scalable computational genomics applications. In Proceedings of the
2016 International Conference on Supercomputing, ICS ’16, pages 34:1–
34:12, New York, NY, USA, 2016. ACM.

[28] P. D. Marinescu and C. Cadar. Katch: High-coverage testing of software
patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2013, pages 235–245, New York,
NY, USA, 2013. ACM.

[29] T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. Slowfuzz: Automated
domain-independent detection of algorithmic complexity vulnerabilities.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 2155–2168, New York, NY,
USA, 2017. ACM.

[30] A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint solving
for high-level wcet analysis. In 18th Workshop on Logic-based Methods
in Programming Environments (WLPE2008), 2008.

[31] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended
symbolic execution on binary programs. In Proceedings of the Eigh-
teenth International Symposium on Software Testing and Analysis,
ISSTA ’09, pages 225–236, New York, NY, USA, 2009. ACM.

[32] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine
for c. In Proceedings of the 10th European Software Engineering Con-
ference Held Jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE-13, pages 263–272,
New York, NY, USA, 2005. ACM.

[33] J. Strejček and M. Trtı́k. Abstracting path conditions. In Proceedings
of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pages 155–165, New York, NY, USA, 2012. ACM.

[34] N. Tillmann and J. De Halleux. Pex: White box test generation for .net.
In Proceedings of the 2Nd International Conference on Tests and Proofs,
TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[35] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, and F. Catthoor. A
practical dynamic single assignment transformation. ACM Trans. Des.
Autom. Electron. Syst., 12(4), Sept. 2007.

[36] J. Wei, J. Chen, Y. Feng, K. Ferles, and I. Dillig. Singularity: Pattern
fuzzing for worst case complexity. In 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 18), November 2018.

[37] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-guided path
exploration in dynamic symbolic execution. In IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN), pages 359–368.
IEEE, 2009.

[38] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li. Proteus: Computing disjunc-
tive loop summary via path dependency analysis. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, pages 61–72, New York, NY, USA,
2016. ACM.

[39] C.-S. D. Yang and L. L. Pollock. Towards a structural load testing tool.
In Proceedings of the 1996 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’96, pages 201–208, New York,
NY, USA, 1996. ACM.

[40] P. Zhang, S. Elbaum, and M. B. Dwyer. Automatic generation of
load tests. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 43–52,
Washington, DC, USA, 2011. IEEE Computer Society.

